RHIC/AP/50

Integration of LabView with ATR Systems

Chris Saltmarsh
December 8, 1994

After the discussions on 12/7/94 regarding the integration of LabView with the (develop-
ing) ATR control structure, we drew a data flow diagram to represent the various processes
and data involved. It is shown on the next page.

We discuss the processes shown in the figure with an indication of the work that needs
to be done.

“Translate Glish ++ LabView” Persistent multi-threaded Glish client. Uses SDS BPM
memory map definition to translate LabView data, read/write commands to Glish events.
These events feed to ADOIF client, initially for the memory ADO. Returns data from ADOIF
to LabView. We build the communication through a TCP/IP link: thus we can connect to
LabView on Mac or Sun, or both at the same time. This program should stay simple: no
graphics, no computation, just a translator.

Effort:

- TCP/IP needs some study. Not deadly.

- Non-persistent client is simple. Fine to start.
- Persistence: ask Todd. Being done anyway.

- SDS data map - done. Needs updating (the one detailed at the end of this note is 6
months old) and needs putting in a Holy place; get instrumentation at least used to

the idea of putting their best guess in a controlled place.

“LabView”

- Does the cool analysis Tom needs.

SUOI08UU0)) MIIA Qe WJd 0] Wwelder(] MO[] eye(:1 2anSiq

Run LabView
on Mac

Run LabView
on Sun

Commands/Data
(TCP/IP link)

Translate Glish
<--> LabView

BPM memory Glish requests ;
definition

Interface

BPM Memory Map to ADO's

~

Drive Beam
Pos Mon

Drive VME memory

VME Memory

"External"

Glish world

ADO World

- TF, BEAMPOS.DAT
TF SNAIL 7-Dec-94
Page 1 of 1

- Can drive a TCP/IP link.

Effort: TCP/IP has been done before. We need to work on
1. How to rendezvous with the Glish translator

2. What protocol to use talking to it. (KISS)

Make this shot at it simple and basic. See if it’s promising. Compare to (e.g.) MatLab.
If there is clear benefit, the Glish/LabView connection can be formalised - it is probably
not a difficult job (connections to tcl/tk and to perl are already being done, for completely
dissimilar reasons). But if it appears worth doing, its worth doing *right*.

“Drive VME memory”

- Memory ADO Exists.

- Using this ADO, we give meaning and context to the data transfers to VME by using

data definitions accessed at the Unix level.

“Drive BPM”

- BPM ADO. Doesn’t exist yet.

- When this is ready, the same data definition is used to give meaning to transfers - this
time the information will be accepted by the ADO at compile or (probably) initialisation

time.

The structure of the BPM Memory Map as it existed six months ago is detailed below.

The updated version needs to be acquired from Tom.

BeamPosSds created Fri Aug 19 09:44:05 1994

ControlRegisters Structure

DelayCounterRead Long32

EventRead[8] Word

DelayCounterSet Long32

EventSet[8] Word
ITnitAvOrbitPointer[1](31) Long32 Bitfield
InitTBTPointer[1] (30) Long32 Bitfield
ResetRevCounter[1](29) Long32 Bitfield
junkbits[29](0) Long32 Bitfield

OrbitBuffer[512] Structure
Posl Word
Pos2 Word
Charge1[14] (18) Long32 Bitfield
Recordi[2] (16) Long32 Bitfield
Charge2[14] (2) Long32 Bitfield
Record2[2] (0) Long32 Bitfield

TBTBuffer[512] Structure
Posl Word
Pos2 Word
Charge1[14] (18) Long32 Bitfield
Record1[2] (16) Long32 Bitfield
Charge2[14] (2) Long32 Bitfield
Record2{2] (0) Long32 Bitfield

ConfigRegReadback Structure
RevCounter Long32
AvOrbPointer Long32
TBTPointer Long32
Frontend1Switches Word
Frontend2Switches Word

FixedDelayl Word

FixedDelay2 Word
junk[3] Byte
BunchNumber Byte

CorrectionCoeff Word

ConfigRegSetting Structure
RevCounter Long32
AvOrbPointer Long32
TBTPointer Long32
Frontend1Switches Word
Frontend2Switches Word
FixedDelayl Word
FixedDelay2 Word
junk[3] Byte
BunchNumber Byte

CorrectionCoeff Word

